系统性能测试及调优

1、TCP调优

TCP链接是有很多开销的,一个是会占用文件描述符,另一个是会开缓存,一般来说一个系统可以支持的TCP链接数是有限的,我们需要清楚地认识到TCP链接对系统的开销是很大的。正是因为TCP是耗资源的,所以,很多攻击都是让你系统上出现大量的TCP链接,把你的系统资源耗尽。比如著名的SYNC Flood攻击。

所以,我们要注意配置KeepAlive参数,这个参数的意思是定义一个时间,如果链接上没有数据传输,系统会在这个时间发一个包,如果没有收到回应,那么TCP就认为链接断了,然后就会把链接关闭,这样可以回收系统资源开销。(注:HTTP层上也有KeepAlive参数)对于像HTTP这样的短链接,设置一个1-2分钟的keepalive非常重要。这可以在一定程度上防止DoS攻击。有下面几个参数(下面这些参数的值仅供参考):

net.ipv4.tcp_keepalive_probes = 5

net.ipv4.tcp_keepalive_intvl = 20

net.ipv4.tcp_fin_timeout = 30

对于TCP的TIME_WAIT这个状态,主动关闭的一方进入TIME_WAIT状态,TIME_WAIT状态将持续2个MSL(Max Segment Lifetime),默认为4分钟,TIME_WAIT状态下的资源不能回收。有大量的TIME_WAIT链接的情况一般是在HTTP服务器上。对此,有两个参数需要注意,

net.ipv4.tcp_tw_reuse=1

net.ipv4.tcp_tw_recycle=1

前者表示重用TIME_WAIT,后者表示回收TIME_WAIT的资源。

TCP还有一个重要的概念叫RWIN(TCP Receive Window Size),这个东西的意思是,我一个TCP链接在没有向Sender发出ack时可以接收到的最大的数据包。为什么这个很重要?因为如果Sender没有收到Receiver发过来ack,Sender就会停止发送数据并会等一段时间,如果超时,那么就会重传。这就是为什么TCP链接是可靠链接的原因。重传还不是最严重的,如果有丢包发生的话,TCP的带宽使用率会马上受到影响(会盲目减半),再丢包,再减半,然后如果不丢包了,就逐步恢复。相关参数如下:

net.core.wmem_default = 8388608

net.core.rmem_default = 8388608

net.core.rmem_max = 16777216

net.core.wmem_max = 16777216

一般来说,理论上的RWIN应该设置成:吞吐量  * 回路时间。Sender端的buffer应该和RWIN有一样的大小,因为Sender端发送完数据后要等Receiver端确认,如果网络延时很大,buffer过小了,确认的次数就会多,于是性能就不高,对网络的利用率也就不高了。也就是说,对于延迟大的网络,我们需要大的buffer,这样可以少一点ack,多一些数据,对于响应快一点的网络,可以少一些buffer。因为,如果有丢包(没有收到ack),buffer过大可能会有问题,因为这会让TCP重传所有的数据,反而影响网络性能。所以,高性能的网络重要的是要让网络丢包率非常非常地小(基本上是用在LAN里),如果网络基本是可信的,这样用大一点的buffer会有更好的网络传输性能(来来回回太多太影响性能了)。

2、UDP调优

说到UDP的调优, 就得说MTU——最大传输单元(其实这对TCP也一样,因为这是链路层上的东西)。所谓最大传输单元,你可以想像成是公路上的公交车,假设一个公交车可以最多坐70人,带宽就像是公路的车道数一样,如果一条路上最多可以容下100辆公交车,那意味着我最多可以运送7000人,但是如果公交车坐不满,比如平均每辆车只有20人,那么我只运送了2000人,于是我公路资源(带宽资源)就被浪费了。 所以,我们对于一个UDP的包,我们要尽量地让它大到MTU的最大尺寸再往网络上传,这样可以最大化带宽利用率。对于这个MTU,以太网是1500字节,光纤是4352字节,802.11无线网是7981。但是,当我们用TCP/UDP发包的时候,我们的有效负载Payload要低于这个值,因为IP协议会加上20个字节,UDP会加上8个字节(TCP加的更多),所以,一般来说,你的一个UDP包的最大应该是1500-8-20=1472,这是你的数据的大小。当然,如果你用光纤的话, 这个值就可以更大一些。(顺便说一下,对于某些千光以态网网卡来说,在网卡上,网卡硬件如果发现你的包的大小超过了MTU,其会帮你做fragment,到了目标端又会帮你做重组,这就不需要你在程序中处理了)

用Socket编程的时候,你可以使用setsockopt() 设置 SO_SNDBUF/SO_RCVBUF 的大小,TTL和KeepAlive这些关键的设置,当然,还有很多,具体可以查看一下Socket的手册。

最后UDP还有一个最大的好处是multi-cast多播,这个技术对于你需要在内网里通知多台结点时非常方便和高效。而且,多播这种技术对于机会的水平扩展(需要增加机器来侦听多播信息)也很有利。

3、网卡调优

对于网卡,也是可以调优的,这对于千兆以及网网卡非常必要,在Linux下,我们可以用ifconfig查看网上的统计信息,如果我们看到overrun上有数据,我们就可能需要调整一下txqueuelen的尺寸(一般默认为1000),我们可以调大一些,如:ifconfig eth0 txqueuelen 5000。Linux下还有一个命令叫:ethtool可以用于设置网卡的缓冲区大小。在Windows下,我们可以在网卡适配器中的高级选项卡中调整相关的参数(如:Receive Buffers, Transmit Buffer等,不同的网卡有不同的参数)。把Buffer调大对于需要大数据量的网络传输非常有效。

4、其它网络性能

关于多路复用技术,也就是用一个线程来管理所有的TCP链接,有三个系统调用要重点注意:一个是select,这个系统调用只支持上限1024个链接,第二个是poll,其可以突破1024的限制,但是select和poll本质上是使用的轮询机制,轮询机制在链接多的时候性能很差,因主是O(n)的算法,所以,epoll出现了,epoll是操作系统内核支持的,仅当在链接活跃时,操作系统才会callback,这是由操作系统通知触发的,但其只有Linux Kernel 2.6以后才支持(准确说是2.5.44中引入的),当然,如果所有的链接都是活跃的,过多的使用epoll_ctl可能会比轮询的方式还影响性能,不过影响的不大。

另外,关于一些和DNS Lookup的系统调用要小心,比如:gethostbyaddr/gethostbyname,这个函数可能会相当的费时,因为其要到网络上去找域名,因为DNS的递归查询,会导致严重超时,而又不能通过设置什么参数来设置time out,对此你可以通过配置hosts文件来加快速度,或是自己在内存中管理对应表,在程序启动时查好,而不要在运行时每次都查。另外,在多线程下面,gethostbyname会一个更严重的问题,就是如果有一个线程的gethostbyname发生阻塞,其它线程都会在gethostbyname处发生阻塞,这个比较变态,要小心。(可以试试GNU的gethostbyname_r(),这个的性能要好一些) 这种到网上找信息的东西很多,比如,如果你的Linux使用了NIS,或是NFS,某些用户或文件相关的系统调用就很慢,所以要小心。

4.4系统调优

1、I/O模型

前面说到过select/poll/epoll这三个系统调用,我们都知道,Unix/Linux下把所有的设备都当成文件来进行I/O,所以,那三个操作更应该算是I/O相关的系统调用。说到  I/O模型,这对于我们的I/O性能相当重要,我们知道,Unix/Linux经典的I/O方式是:

第一种,同步阻塞式I/O。

第二种,同步无阻塞方式。其通过fctnl设置 O_NONBLOCK 来完成。

第三种,对于select/poll/epoll这三个是I/O不阻塞,但是在事件上阻塞,算是:I/O异步,事件同步的调用。

第四种,AIO方式。这种I/O 模型是一种处理与 I/O 并行的模型。I/O请求会立即返回,说明请求已经成功发起了。在后台完成I/O操作时,向应用程序发起通知,通知有两种方式:一种是产生一个信号,另一种是执行一个基于线程的回调函数来完成这次 I/O 处理过程。

第四种因为没有任何的阻塞,无论是I/O上,还是事件通知上,所以,其可以让你充分地利用CPU,比起第二种同步无阻塞好处就是,第二种要你一遍一遍地去轮询。Nginx之所以高效,是其使用了epoll和AIO的方式来进行I/O的。

再说一下Windows下的I/O模型:

a)一个是WriteFile系统调用,这个系统调用可以是同步阻塞的,也可以是同步无阻塞的,关于看文件是不是以Overlapped打开的。关于同步无阻塞,需要设置其最后一个参数Overlapped,微软叫Overlapped I/O,你需要WaitForSingleObject才能知道有没有写完成。这个系统调用的性能可想而知。

b)另一个叫WriteFileEx的系统调用,其可以实现异步I/O,并可以让你传入一个callback函数,等I/O结束后回调之,但是这个回调的过程Windows是把callback函数放到了APC(Asynchronous Procedure Calls)的队列中,然后,只用当应用程序当前线程成为可被通知状态(Alterable)时,才会被回调。只有当你的线程使用了这几个函数时WaitForSingleObjectExWaitForMultipleObjectsEx

MsgWaitForMultipleObjectsExSignalObjectAndWait 和 SleepEx,线程才会成为Alterable状态。可见,这个模型,还是有wait,所以性能也不高。

c)然后是IOCP – IO Completion Port,IOCP会把I/O的结果放在一个队列中,但是,侦听这个队列的不是主线程,而是专门来干这个事的一个或多个线程去干(老的平台要你自己创建线程,新的平台是你可以创建一个线程池)。IOCP是一个线程池模型。这个和Linux下的AIO模型比较相似,但是实现方式和使用方式完全不一样。

当然,真正提高I/O性能方式是把和外设的I/O的次数降到最低,最好没有,所以,对于读来说,内存cache通常可以从质上提升性能,因为内存比外设快太多了。对于写来说,cache住要写的数据,少写几次,但是cache带来的问题就是实时性的问题,也就是latency会变大,我们需要在写的次数上和响应上做权衡。

2、多核CPU调优

关于CPU的多核技术, CPU0是很关键的,如果0号CPU被用得过多时,别的CPU性能也会下降,因为CPU0作用是有调整功能的,所以,我们不能任由操作系统负载均衡,因为我们自己更了解自己的程序,所以,我们可以手动的为其分配CPU核,而不会过多地占用CPU0,或是让我们关键进程和一堆别的进程挤在一起。

对于Windows来说,我们可以通过“任务管理器”中的“进程”而中右键菜单中的“设置相关性……”(Set Affinity…)来设置并限制这个进程能被运行在哪些核上。

对于Linux来说,可以使用taskset命令来设置(你可以通过安装schedutils来安装这个命令:apt-get install schedutils)

多核CPU还有一个技术叫NUMA技术(Non-Uniform Memory Access)。传统的多核运算是使用SMP(Symmetric Multi-Processor )模式,多个处理器共享一个集中的存储器和I/O总线。于是就会出现一致存储器访问的问题,一致性通常意味着性能问题。NUMA模式下,处理器被划分成多个node, 每个node有自己的本地存储器空间。在Linux下,对NUMA调优的命令是:numactl 。如下面的命令:(指定命令“myprogram arg1 arg2”运行在node 0 上,其内存分配在node 0 和 1上)

numactl --cpubind=0 --membind=0,1 myprogram arg1 arg2

当然,上面这个命令并不好,因为内存跨越了两个node,这非常不好。最好的方式是只让程序访问和自己运行一样的node,如:

$ numactl --membind 1 --cpunodebind 1 --localalloc myapplication

3、文件系统调优

因为文件系统也是有cache的,所以,为了让文件系统有最大的性能:首要的事情就是分配足够大的内存,这个非常关键,在Linux下可以使用free命令来查看 free/used/buffers/cached,理想来说,buffers和cached应该有40%左右;然后是一个快速的硬盘控制器,SCSI会好很多;最快的是Intel SSD 固态硬盘,速度超快,但是写次数有限。

接下来,我们就可以调优文件系统配置了,对于Linux的Ext3/4来说,几乎在所有情况下都有所帮助的一个参数是关闭文件系统访问时间,在/etc/fstab下看看你的文件系统有没有noatime参数(一般来说应该有),还有一个是dealloc,它可以让系统在最后时刻决定写入文件发生时使用哪个块,可优化这个写入程序。还要注意一下三种日志模式:data=journal、data=ordered和data=writeback。默认设置data=ordered提供性能和防护之间的最佳平衡。

当然,对于这些来说,ext4的默认设置基本上是最佳优化了。

这里介绍一个Linux下的查看I/O的命令—— iotop,可以让你看到各进程的磁盘读写的负载情况。

4.5数据库调优

1、数据库引擎调优

数据库的锁的方式。这个非常地重要。并发情况下,锁是非常影响性能的。各种隔离级别,行锁,表锁,页锁,读写锁,事务锁,以及各种写优先还是读优先机制。性能最高的是不要锁,所以,分库分表,冗余数据,减少一致性事务处理,可以有效地提高性能。NoSQL就是牺牲了一致性和事务处理,并冗余数据,从而达到了分布式和高性能。

数据库的存储机制。不但要搞清楚各种类型字段是怎么存储的,更重要的是数据库的数据存储方式,是怎么分区的,是怎么管理的,比如Oracle的数据文件,表空间,段,等等。了解清楚这个机制可以减轻很多的I/O负载。比如:MySQL下使用show engines;可以看到各种存储引擎的支持。不同的存储引擎有不同的侧重点,针对不同的业务或数据库设计会让你有不同的性能。

数据库的分布式策略。最简单的就是复制或镜像,需要了解分布式的一致性算法,或是主主同步,主从同步。通过了解这种技术的机理可以做到数据库级别的水平扩展。

2、SQL语句优化

关于SQL语句的优化,首先也是要使用工具,比如:MySQL SQL Query AnalyzerOracle SQL Performance Analyzer,或是微软SQL Query Analyzer,基本上来说,所有的RMDB都会有这样的工具,来让你查看你的应用中的SQL的性能问题。 还可以使用explain来看看SQL语句最终Execution Plan会是什么样的。

还有一点很重要,数据库的各种操作需要大量的内存,所以服务器的内存要够,优其应对那些多表查询的SQL语句,那是相当的耗内存。

下面简单说几个会有性能问题的SQL:

1)全表检索。比如:select * from user where lastname = “xxxx”,这样的SQL语句基本上是全表查询,线性复杂度O(n),记录数越多,性能也越差(如:100条记录的查找要50ms,一百万条记录需要5分钟)。对于这种情况,我们可以有两种方法提高性能:一种方法是分表,把记录数降下来,另一种方法是建索引(为lastname建索引)。索引就像是key-value的数据结构一样,key就是where后面的字段,value就是物理行号,对索引的搜索复杂度是基本上是O(log(n)) ——用B-Tree实现索引(如:100条记录的查找要50ms,一百万条记录需要100ms)。

喜欢 | 7 不喜欢 | 0